Émile Le Camus

Émile Le Camus, né le à Paraza (Aude, France) et mort le à Castelnaudary (Aude, France), est un théologien, bibliste, prédicateur et prélat catholique français, évêque de La Rochelle de 1901 jusqu’à sa mort.

Émile Le Camus fait ses études préparatoires à Carcassonne, puis entre au séminaire Saint-Sulpice. En 1861, il se rend à Rome, où il reçoit son doctorat en théologie. L’année suivante, le , il est ordonné prêtre à Carcassonne.

C’est un orateur remarquable, et, en 1867, il est invité à prêcher le carême à Avignon, ville dont il est nommé chanoine honoraire. Lors du Concile Vatican I, Mgr Félix-Joseph-François-Barthélemy de Las Cases, évêque de Constantine, le choisit comme théologien.

En 1875, Le Camus il est nommé directeur adjoint de l’école de l’Ordre dominicain à Sorèze, en France, mais peu de temps après il devient chef de la nouvelle école Saint-François-de-Sales, qu’il a créée à Castelnaudary. Il y travaille jusqu’en 1887, puis démissionne pour se consacrer exclusivement à l’étude du Nouveau Testament.

En 1888, pour se doter correctement pour cette étude, et en particulier pour étudier la topographie de la Palestine, il fait son premier voyage à l’Est. Il fait de nombreux voyages dont les résultats et les études sont publiées à plusieurs reprises. Parallèlement à ses études bibliques, le père Le Camus prêche à Lyon, Montpellier, Paris et Rome.

Le , il est nommé évêque de La Rochelle et Saintes par le pape Léon XIII. Il est consacré à Carcassonne, le , par le cardinal Victor Lecot, assisté de Mgrs Eudoxe-Irénée-Edouard Mignot et Pierre-Eugène Rougerie.

Devenu évêque, il entreprend tout de suite la réforme des études bibliques dans le grand séminaire de La Rochelle. Mais rapidement, la séparation de l’Église et de l’État absorbe son énergie. De tendances libérales, il s’y déclare ouvertement favorable, ce qui est, à l’époque, inouï pour un évêque. Il meurt brusquement le à Castelnaudary.

Yves Blomme, Émile Le Camus (1839-1906) : Son rôle au début de la crise moderniste et lors de la Séparation de l’Église et de l’État, Harmattan, , 482 p. (ISBN 2-7475-2463-9)

Maximum entropy probability distribution

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class (usually defined in terms of specified properties or measures), then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

If X is a discrete random variable with distribution given by

then the entropy of X is defined as

If X is a continuous random variable with probability density p(x), then the differential entropy of X is defined as

p(x) log p(x) is understood to be zero whenever p(x) = 0.

This is a special case of more general forms described in the articles Entropy (information theory), Principle of maximum entropy, and differential entropy. In connection with maximum entropy distributions, this is the only one needed, because maximizing





H


(


X


)




{\displaystyle H(X)}


will also maximize the more general forms.

The base of the logarithm is not important as long as the same one is used consistently: change of base merely results in a rescaling of the entropy. Information theorists may prefer to use base 2 in order to express the entropy in bits; mathematicians and physicists will often prefer the natural logarithm, resulting in a unit of nats for the entropy.

Many statistical distributions of applicable interest are those for which the moments or other measurable quantities are constrained to be constants. The following theorem by Ludwig Boltzmann gives the form of the probability density under these constraints.

Suppose S is a closed subset of the real numbers R and we choose to specify n measurable functions f1,…,fn and n numbers a1,…,an. We consider the class C of all real-valued random variables which are supported on S (i.e. whose density function is zero outside of S) and which satisfy the n expected value conditions

If there is a member in C whose density function is positive everywhere in S, and if there exists a maximal entropy distribution for C, then its probability density p(x) has the following shape:

where the constants c and λj have to be determined so that the integral of p(x) over S is 1 and the above conditions for the expected values are satisfied. Conversely, if constants c and λj like this can be found, then p(x) is indeed the density of the (unique) maximum entropy distribution for our class C.

Suppose S = {x1,x2,…} is a (finite or infinite) discrete subset of the reals and we choose to specify n functions f1,…,fn and n numbers a1,…,an. We consider the class C of all discrete random variables X which are supported on S and which satisfy the n conditions

If there exists a member of C which assigns positive probability to all members of S and if there exists a maximum entropy distribution for C, then this distribution has the following shape:

where the constants c and λj have to be determined so that the sum of the probabilities is 1 and the above conditions for the expected values are satisfied. Conversely, if constants c and λj like this can be found, then the above distribution is indeed the maximum entropy distribution for our class C.

This theorem is proved with the calculus of variations and Lagrange multipliers. The constraints can be written as




























f



j




(


x


)


p


(


x


)


d


x


=



a



j






{\displaystyle \int _{-\infty }^{\infty }f_{j}(x)p(x)dx=a_{j}}


We consider the functional





J


(


p


(


x


)


)


=




























p


(


x


)


ln







p


(


x


)



d


x


+



λ




0





(
























p


(


x


)


d


x






1


)



+








j


=


1




n





λ




j





(

























f



j




(


x


)


p


(


x


)


d


x







a



j




)





{\displaystyle J(p(x))=-\int _{-\infty }^{\infty }p(x)\ln {p(x)}dx+\lambda _{0}\left(\int _{-\infty }^{\infty }p(x)dx-1\right)+\sum _{j=1}^{n}\lambda _{j}\left(\int _{-\infty }^{\infty }f_{j}(x)p(x)dx-a_{j}\right)}


where the






λ




j






{\displaystyle \lambda _{j}}


are the Lagrange multipliers. The zeroth constraint ensures the second axiom of probability. The other constraints are that the measurements of the function are given constants up to order





n




{\displaystyle n}


. The entropy attains an extremum when the functional derivative is equal to zero:








δ




J


(


p


(


x


)


)





δ




p


(


x


)






=






ln







p


(


x


)







1


+



λ




0




+








j


=


1




n





λ




j





f



j




(


x


)


=


0




{\displaystyle {\frac {\delta {J(p(x))}}{\delta {p(x)}}}=-\ln {p(x)}-1+\lambda _{0}+\sum _{j=1}^{n}\lambda _{j}f_{j}(x)=0}


It is an exercise for the reader that this extremum is a maximum. Therefore, the maximum entropy probability distribution in this case must be of the form





p


(


x


)


=



e







1


+



λ




0











e









j


=


1




n





λ




j





f



j




(


x


)




=


c






exp







(








j


=


1




n





λ




j





f



j




(


x


)


)




.




{\displaystyle p(x)=e^{-1+\lambda _{0}}\cdot e^{\sum _{j=1}^{n}\lambda _{j}f_{j}(x)}=c\cdot \exp \left(\sum _{j=1}^{n}\lambda _{j}f_{j}(x)\right)\;.}


The proof of the discrete version is essentially the same.

Note that not all classes of distributions contain a maximum entropy distribution. It is possible that a class contain distributions of arbitrarily large entropy (e.g. the class of all continuous distributions on R with mean 0 but arbitrary standard deviation), or that the entropies are bounded above but there is no distribution which attains the maximal entropy (e.g. the class of all continuous distributions X on R with E(X) = 0 and E(X2) = E(X3) = 1 (See Cover, Ch 12)). It is also possible that the expected value restrictions for the class C force the probability distribution to be zero in certain subsets of S. In that case our theorem doesn’t apply, but one can work around this by shrinking the set S.

Every probability distribution is trivially a maximum entropy probability distribution under the constraint that the distribution have its own entropy. To see this, rewrite the density as





p


(


x


)


=


exp







(


ln







p


(


x


)



)





{\displaystyle p(x)=\exp {(\ln {p(x)})}}


and compare to the expression of the theorem above. By choosing





ln







p


(


x


)







f


(


x


)




{\displaystyle \ln {p(x)}\rightarrow f(x)}


to be the measurable function and









exp







(


f


(


x


)


)



f


(


x


)


d


x


=






H




{\displaystyle \int \exp {(f(x))}f(x)dx=-H}


to be the constant,





p


(


x


)




{\displaystyle p(x)}


is the maximum entropy probability distribution under the constraint









p


(


x


)


f


(


x


)


d


x


=






H




{\displaystyle \int p(x)f(x)dx=-H}


.

Nontrivial examples are distributions that are subject to multiple constraints that are different from the assignment of the entropy. These are often found by starting with the same procedure





ln







p


(


x


)







f


(


x


)




{\displaystyle \ln {p(x)}\rightarrow f(x)}


and finding that





f


(


x


)




{\displaystyle f(x)}


can be separated into parts.

A table of examples of maximum entropy distributions is given in Lisman (1972) and Park & Bera (2009)

The uniform distribution on the interval [a,b] is the maximum entropy distribution among all continuous distributions which are supported in the interval [a, b], and thus the probability density is 0 outside of the interval. This uniform density can be related to Laplace’s principle of indifference, sometimes called the principle of insufficient reason. More generally, if we’re given a subdivision a=a0 < a1 < … < ak = b of the interval [a,b] and probabilities p1,…,pk which add up to one, then we can consider the class of all continuous distributions such that

The density of the maximum entropy distribution for this class is constant on each of the intervals [aj-1,aj). The uniform distribution on the finite set {x1,…,xn} (which assigns a probability of 1/n to each of these values) is the maximum entropy distribution among all discrete distributions supported on this set.

The exponential distribution, for which the density function is

is the maximum entropy distribution among all continuous distributions supported in [0,∞] that have a specified mean of 1/λ.

The normal distribution N(μ,σ2), for which the density function is

has maximum entropy among all real-valued distributions with a specified variance σ2 (a particular moment). Therefore, the assumption of normality imposes the minimal prior structural constraint beyond this moment. (See the differential entropy article for a derivation.)

Among all the discrete distributions supported on the set {x1,…,xn} with a specified mean μ, the maximum entropy distribution has the following shape:

where the positive constants C and r can be determined by the requirements that the sum of all the probabilities must be 1 and the expected value must be μ.

For example, if a large number N of dice are thrown, and you are told that the sum of all the shown numbers is S. Based on this information alone, what would be a reasonable assumption for the number of dice showing 1, 2, …, 6? This is an instance of the situation considered above, with {x1,…,x6} = {1,…,6} and μ = S/N.

Finally, among all the discrete distributions supported on the infinite set {x1,x2,…} with mean μ, the maximum entropy distribution has the shape:

where again the constants C and r were determined by the requirements that the sum of all the probabilities must be 1 and the expected value must be μ. For example, in the case that xk = k, this gives

such that respective maximum entropy distribution is the geometric distribution.

For a continuous random variable






θ




i






{\displaystyle \theta _{i}}


distributed about the unit circle, the Von Mises distribution maximizes the entropy when the real and imaginary parts of the first circular moment are specified or, equivalently, the circular mean and circular variance are specified.

When the mean and variance of the angles






θ




i






{\displaystyle \theta _{i}}


modulo





2


π





{\displaystyle 2\pi }


are specified, the wrapped normal distribution maximizes the entropy.

There exists an upper bound on the entropy of continuous random variables on






R





{\displaystyle \mathbb {R} }


with a specified mean, variance, and skew. However, there is no distribution which achieves this upper bound because





p


(


x


)


=


c


exp







(



λ




1




x


+



λ




2





x



2




+



λ




3





x



3




)





{\displaystyle p(x)=c\exp {(\lambda _{1}x+\lambda _{2}x^{2}+\lambda _{3}x^{3})}}


is unbounded except when






λ




3




=


0




{\displaystyle \lambda _{3}=0}


(see Cover, chapter 12). Thus, we cannot construct a maximum entropy distribution given these constraints.[clarification needed (explanation)]

However, the maximum entropy is





ϵ





{\displaystyle \epsilon }


-achievable: a distribution’s entropy can be arbitrarily close to the upper bound. Start with a normal distribution of the specified mean and variance. To introduce a positive skew, perturb the normal distribution upward by a small amount at a value many





σ





{\displaystyle \sigma }


larger than the mean. The skewness, being proportional to the third moment, will be affected more than the lower order moments.

In the table below, each listed distribution maximizes the entropy for a particular set of functional constraints listed in the third column, and the constraint that x be included in the support of the probability density, which is listed in the fourth column. Several examples (Bernoulli, geometric, exponential, Laplace, Pareto) listed are trivially true because their associated constraints are equivalent to the assignment of their entropy. They are included anyway because their constraint is related to a common or easily measured quantity. For reference,





Γ



(


x


)


=








0











e







t





t



x






1




d


t




{\displaystyle \Gamma (x)=\int _{0}^{\infty }e^{-t}t^{x-1}dt}


is the gamma function,





ψ



(


x


)


=




d



d


x





ln






Γ



(


x


)


=






Γ







(


x


)




Γ



(


x


)







{\displaystyle \psi (x)={\frac {d}{dx}}\ln \Gamma (x)={\frac {\Gamma ‚(x)}{\Gamma (x)}}}


is the digamma function,





B


(


p


,


q


)


=





Γ



(


p


)


Γ



(


q


)




Γ



(


p


+


q


)







{\displaystyle B(p,q)={\frac {\Gamma (p)\Gamma (q)}{\Gamma (p+q)}}}


is the beta function, and γE is Euler’s constant.

Aruba Dushi Tera

Aruba Dushi Tera is het officiële volkslied van Aruba. Het lied, een wals, werd geschreven door Juan Chabaya Lampe met een compositie van Rufo Wever. Het werd op 18 maart 1976 officieel aangenomen als volkslied.

Aruba patria aprecia
nos cuna venera
chikito y simpel bo por ta
pero si respeta.

Refrein: O, Aruba, dushi tera
nos baranca tan stima
nos amor p’abo t’asina grandi
cu n’tin nada pa kibre
cu n’tin nada pa kibre

Bo playanan tan admira
cu palma tur dorna
bo escudo y bandera ta
orguyo di nos tur!

Refrein

Grandeza di bo pueblo ta
su gran cordialidad
cu Dios por guia y conserva
su amor pa libertad!

Refrein

Aruba gewaardeerd inheems land
Onze vereerde wieg
U kunt klein en eenvoudig zijn
Maar toch gerespecteerd.

Refrein:
Oh, Aruba, mooi land
Onze rots zo geliefd
Onze liefde voor u is zo sterk
Dat niets het kan vernietigen,
Dat niets het kan vernietigen.

Uw stranden zo bewonderd
Alle met palmbomen versierd
Uw wapen en uw vlag
Zijn de trots van iedereen!

Refrein

De grootsheid van onze mensen
Is hun geweldige hartelijkheid
Die God kan gidsen en bewaren
Zijn liefde voor vrijheid!

Refrein

Onafhankelijke staten: Antigua en Barbuda · Bahama’s · Barbados · Belize · Canada · Costa Rica · Cuba · Dominica · Dominicaanse Republiek · El Salvador · Grenada · Guatemala · Haïti · Honduras · Jamaica · Mexico · Nicaragua · Panama · Saint Kitts en Nevis · Saint Lucia · Saint Vincent en de Grenadines · Trinidad en Tobago · Verenigde Staten

Afhankelijke gebieden: Amerikaanse Maagdeneilanden · Anguilla · Aruba · Bermuda · Bonaire · Britse Maagdeneilanden · Curaçao · Groenland · Guadeloupe · Kaaimaneilanden (onofficieel) · Martinique · Montserrat · Puerto Rico · Saba · Saint-Barthélemy · Saint-Martin · Saint-Pierre en Miquelon · Sint Eustatius · Sint Maarten · Turks- en Caicoseilanden

International Association for Physicians in Aesthetic Medicine

The International Association for Physicians in Aesthetic Medicine (IAPAM) is a voluntary association founded to unite licensed physicians who practice aesthetic medicine, by assisting in their professional and personal development.

The IAPAM membership is open to licensed Doctor of Medicine (M.D.), Doctor of Osteopathic Medicine (D.O.), Physicians Assistants (P.A.), Nurse Practitioners (N.P.), and the medical students studying for those degrees. The goal of the IAPAM is to offer education, ethical standards, and credentialing to those professionals working towards discrete certifications in Aesthetic Medicine.

The IAPAM was founded in 2006, and is headquartered in Las Vegas, Nevada. There are currently over 600 physician and associate members from various parts of the world, including the United States, Canada, the UK, Singapore, South Africa, Colombia, Venezuela, Norway, South Korea, Israel, Pakistan, Germany, Egypt, Argentina, Italy, Philippines, Jamaica, Mexico, Taiwan and Indonesia.

The IAPAM has two advisory boards. The medical advisory board is composed of experienced physicians, including board certified dermatologists, and other physicians specializing in aesthetic medicine. In addition, there is a business advisory board which is composed of several industry experts including: Dr Toni Stockton MD, Dr Jennifer Wild DO, Dr Bill Fulton MD, Jeff Russell, and medical spa consultant, Cindy Graf. The program was designed by physicians for physicians and other healthcare providers. They direct the clinical training, and the business advisory board provides business expertise to practitioners as well as manages the day-to-day operations of the IAPAM and its events.

The IAPAM focuses on providing clinical instruction pursuant to the following core competencies in the field of Aesthetic Medicine:

Jewelers‘ Row, Philadelphia

Coordinates:

Jewelers‘ Row, located in the Center City section of Philadelphia, Pennsylvania, is composed of more than 300 retailers, wholesalers, and craftsmen located on Sansom Street between Seventh and Eighth Streets, and on Eighth Street between Chestnut and Walnut Streets.

It is the oldest diamond district in America, and second in size only to the one in New York City. Many of the area’s retail, jewelrymaking and appraisal businesses have been owned by the same families for five generations.

Jeweler’s Row (Carstairs Row) was designed by builder and architect Thomas Carstairs circa 1799 through 1820, for developer William Sansom, as part of the first speculative housing developments in the United States, and introduction of the Row house in the United States. Carstairs Row was built on the southern part of the site occupied by „Morris‘ Folly“ – Robert Morris’ unfinished mansion designed by L’Enfant.

Sansom bought (at sheriff’s sale) the property and unfinished house of Robert Morris, on Walnut St. between 7th and 8th Sts. Sansom bi-sected the land with a new east-west eponymous street. Carstairs purchased the south side of Sansom St. and erected 22 look-alike dwellings. Prior to this time houses had been built not in rows, but individually. It can be contrasted with Elfreth’s Alley where all the house are of varying heights and widths, with different street lines, doorways and brickwork.

The grid pattern laid down by William Penn, and continued by subsequent planners and surveyors heavily influenced the row house form of architecture. The block-long row house is an important example of Philadelphia’s architectural and developmental history.

Sansom erected the buildings on what was then the outskirts of Philadelphia. To attract tenants he paved Sansom Street at his own expense. He then hired Benjamin Latrobe to design another row on the 700 block of Walnut Street. A prominent feature of the street is the repetitive flat expanse of the buildings, which made it ideal for commercial conversion.

Alterations in the late 19th and early 20th centuries changed most of the row – only 700, 730 and 732 Sansom retained their original experience. 710 Sansom, built in 1870, is a three-story commercial building with stone lintels. Its Victorian style is typical of the buildings that became the center for jewelry and diamond merchants who developed Jewelers’ Row in the mid-19th century (1860–1879).

722 Sansom was originally built in the 1860s and was redesigned in the early 1900s when steel became available. 724 Sansom, built in 1875, has a cast iron first floor.

After the homes were sold for commercial interests, several engravers of plates for books moved in. At 732, the engraver for Edgar Allan Poe lived and worked. His customer, Poe, ate dinner in the house on several occasions.

Notes

Bezirk Wien-Umgebung

Der Bezirk Wien-Umgebung ist ein Verwaltungsbezirk des Landes Niederösterreich.

Er entstand 1954 durch die Auflösung von Groß-Wien und soll Ende 2016 auf die Nachbarbezirke aufgeteilt werden.

In der Zeit des Nationalsozialismus war 1938 eine Reihe von selbstständigen Gemeinden mit Wien zu Groß-Wien vereinigt worden. Als Wien 1946 (Beschluss) bzw. 1954 (Durchführung) auf seine heutige Größe redimensioniert wurde, wurden 80 angeschlossene Gemeinden wieder selbstständig und etliche davon im neuen niederösterreichischen Bezirk Wien-Umgebung zusammengefasst.

Der Bezirk Wien-Umgebung besteht seither aus drei isolierten Gebieten, die jeweils für sich zusammenhängen, jedoch untereinander nicht aneinandergrenzen, nämlich jeweils rund um Schwechat im Südosten und Gerasdorf als flächenmäßig deutlich kleineres im Nordosten sowie (nord-)westlich von Wien das Gebiet Klosterneuburg-Purkersdorf.

Das letztgenannte Gebiet ist zwischen einer westlich von Wien liegenden Region und einer nordwestlich liegenden Region an der kurzen Grenze zwischen dem Gemeindegebiet von Mauerbach (nördlich von Purkersdorf) und dem Gemeindegebiet von Klosterneuburg (weiter im Norden) auf etwa 700 m Breite eingeschnürt und weist keine im Gebiet liegende Verbindungsstraße auf. Daher weist die Bezirkshauptmannschaft in beiden Gebietsteilen eine eigene Dienststelle auf und wird der Bezirk insgesamt oft fälschlicherweise als aus vier isolierten Gebieten bestehend dargestellt.

Der Sitz der Bezirkshauptmannschaft wurde in Klosterneuburg eingerichtet, Außenstellen sind in Purkersdorf, Schwechat, Gerasdorf und in der Wiener Herrengasse situiert.

1956 wurde Pressbaum aus dem Bezirk Sankt Pölten-Land ausgeschieden und dem Bezirk Wien-Umgebung angeschlossen.

Im September 2015 wurde vom niederösterreichischen Landeshauptmann Erwin Pröll angekündigt, dass der Bezirk Wien-Umgebung mit 1. Jänner 2017 aufgelöst und seine 21 Gemeinden an die angrenzenden niederösterreichischen Bezirke aufgeteilt werden sollen. Dies wurde am 24. September 2015 vom Niederösterreichischen Landtag beschlossen. Anschließend wurde von der Landesregierung die Neuzuteilung der Gemeinden auf die angrenzenden Bezirke durchgeführt:

Ursprünglich hätte Gerasdorf an den Bezirk Gänserndorf angeschlossen werden sollen, in einer Bürgerbefragung sprachen sich aber 99 % der Teilnehmer gegen diese Variante aus. Auch die Zuordnung von Mauerbach und Gablitz (vorgesehen zum Bezirk Tulln) sowie von Leopoldsdorf, Lanzendorf und Maria-Lanzendorf (vorgesehen zum Bezirk Mödling) wurde angepasst.

Der Bezirk Wien-Umgebung gliedert sich derzeit in 21 Gemeinden, darunter sechs Städte und sieben Marktgemeinden.

Amstetten | Baden | Bruck an der Leitha | Gänserndorf | Gmünd | Hollabrunn | Horn | Korneuburg | Krems an der Donau | Krems-Land | Lilienfeld | Melk | Mistelbach | Mödling | Neunkirchen | St. Pölten | St. Pölten-Land | Scheibbs | Tulln | Waidhofen an der Thaya | Waidhofen an der Ybbs | Wiener Neustadt | Wiener Neustadt-Land | Wien-Umgebung | Zwettl

Ehemalige Bezirke:  Floridsdorf-Umgebung | Groß-Enzersdorf | Hernals | Hietzing | Hietzing-Umgebung | Pöggstall | Sechshaus | Währing

Ehemalige Expositur:  Pöggstall

Koordinaten:

Al Sims

Allan Eugene Sims (* 18. April 1953 in Toronto, Ontario) ist ein ehemaliger kanadischer Eishockeyspieler und -trainer, der zwischen 1973 und 1983 für die Boston Bruins, Hartford Whalers und Los Angeles Kings in der National Hockey League spielte. Während der Saison 1996/97 war er Cheftrainer der San Jose Sharks. Sein Sohn Tyler ist ebenfalls ein professioneller Eishockeyspieler.

Sims, ein Verteidiger, spielte zunächst von 1971 bis 1973 bei den Cornwall Royals in der Quebec Major Junior Hockey League (QMJHL). In der Saison 1971/72 erreichte er mit dem Team das Finalturnier um den Memorial Cup, das die Royals gewannen. Im WHA Amateur Draft 1973 wurde Sims in der zweiten Runde an 16. Stelle von den New York Raiders ausgewählt. Sims war der erste Draft-Pick in der Franchise-Geschichte des neu gegründeten World Hockey Association-Teams. Zudem wählten ihn die Boston Bruins in der dritten Runde an 47. Position des NHL Amateur Drafts aus. Sims entschied sich letztendlich für die Bruins zu spielen. Die Spielzeiten 1973/74 und 1974/75 absolvierte er komplett bei den Bruins. Danach folgten vier Spielzeiten, die er sowohl in Boston als auch bei deren AHL-Farmteam, den Rochester Americans, verbrachte. Zur Saison 1979/80 wurde Sims im Expansion Draft von den Hartford Whalers ausgewählt, wo er in den zwei Spielzeiten, die er beim Team blieb, wieder zu einem Vollzeit-NHL-Profi avancierte. Danach wechselte Sims an die Westküste, wo ihn bei den Los Angeles Kings dasselbe Schicksal wie in Boston ereilte. Er verbrachte große Teile der zwei Spielzeiten in der AHL bei den New Haven Nighthawks und kam nur noch sporadisch in der NHL zum Einsatz. Nach zwei enttäuschenden Spielzeiten bei den Kings wechselte Sims zunächst in die Schweiz und danach nach Deutschland, wo er für den EV Landshut und den SC Preussen Berlin auflief. Zur Saison 1986/87 wechselte er für zwei Jahre in die British Hockey League (BHL), ehe er 1988 nach Nordamerika zurückkehrte. Sims spielte für ein Jahr bei den Fort Wayne Komets in der International Hockey League (IHL). Zudem war er Assistent des damaligen Trainers.

1989 beendete Sims seine aktive Laufbahn und übernahm den Posten als Cheftrainer in Fort Wayne. Sims erreichte in den vier Spielzeiten als Cheftrainer der Komets viermal die Play-offs. 1992 scheiterte er mit dem Team erst im Finale und in seiner letzten Saison 1993/94 gewann er mit dem Team den Turner Cup. Danach nahm er einen Job als Assistenztrainer bei den Mighty Ducks of Anaheim an. Diese Position bekleidete er für drei Spielzeiten bis zum Ende der Saison 1995/96. Im folgenden Jahr nahmen ihn die San Jose Sharks als Cheftrainer unter Vertrag.

Sims konnte mit den Sharks aber nicht an die Erfolge, die er mit den Komets in der IHL hatte, anknüpfen und verlor den Posten mit einer Bilanz von 27 Siegen bei 47 Niederlagen und acht Unentschieden bereits wieder zum Ende der Saison. Von 1997 bis 2000 coachte Sims die Milwaukee Admirals in der American Hockey League (AHL). Es folgten erfolglose Engagements als Cheftrainer in der East Coast Hockey League und Central Hockey League. Zur Saison 2007/08 übernahm er erneut die Leitung der Fort Wayne Comets und führte die Mannschaft in den Spielzeiten 2007/08 bis 2009/10 drei Mal in Folge zum Gewinn des Turner Cup. Nach der Saison 2012/13 beendete Sims seine Trainerlaufbahn.

S=Siege; N=Niederlagen; U=Unentschieden; OTL=Overtime-Niederlage

Cheftrainer: George Kingston (1991–1993) | Kevin Constantine (1993–1995) | Jim Wiley (1995–1996) | Al Sims (1996–1997) | Darryl Sutter (1997–2003) | Cap Raeder (2003) | Ron Wilson (2003–2008) | Todd McLellan (2008–2015) | Peter DeBoer (seit 2015)

General Manager: Jack Ferreira (1991–1992) | Chuck Grillo (1992–1996) | Dean Lombardi (1996–2003) | Wayne Thomas (2003) | Doug Wilson (seit 2003)

Rörshain

Koordinaten:

Rörshain

Rörshain ist ein Stadtteil der Stadt Schwalmstadt im nordhessischen Schwalm-Eder-Kreis.

Rörshain liegt oberhalb der Talmündung der Gers an der Landesstraße 3074 und ist aus Richtung Ziegenhain über die Bundesstraße 254 erreichbar.

Südlich des Ortes befindet sich eine Sandgrube. Eine der bedeutendsten frühgeschichtlichen Fundstätten Hessens aus der Eiszeit und der Altsteinzeit entdeckte man 1938 bei der „Reutersruh“. Durch das hier reiche Quarzitvorkommen befand sich hier ein unerschöpfliches Materialdepot für Steinwerkzeuge. Einige der hier gefundenen Exponate sich heute im Museum der Schwalm in Ziegenhain ausgestellt.

1238 wird der Rörshain als Reginharteshagen bei einer Übereignung an das Kloster Haina erstmals urkundlich erwähnt. Heinrich und Berta von Uttershausen behalten sich auf Lebenszeit ihre Lehen in Rörshain vor. Im Jahre 1260 übereignen die von Uttershausen Haina den Zehnten zu Rörshain. Heinrich von Uttershausen bestätigt 1278, dass das Kloster Haina seine Güter rechtens gekauft hat und leistet Verzicht. Im 16. Jahrhundert bestanden zwei Mühlen, drei kleinere und drei größere Höfe.

1639, im Dreißigjährigen Krieg, lebte noch ein „Hausgesessener“ im Ort. 1681 gab es wieder sieben Hausgesesse in Rörshain. Ein Müller, ein Maurer, ein Leineweber, zwei Lohnschäfer, ein Schneider und drei Tagelöhner lebten 1782 ein Rörshain.

Der 1928/29 aufgelöste Gutsbezirks Forst Frielendorf wurde zum Teil zu Rörshain eingemeindet.

Um 1940 entstand nordwestlich des Dorfes ein Militärflugplatz. Ein Bruchsteinbau mit Fachwerkobergeschoss, dass Eingangsgebäude des ehemaligen Flugplatzes ist heute noch in der Wolfskaute erhalten. Am 24. März 1945 wurde der Flugplatz bombardiert. Die Bevölkerung und das Dorf wurden hierbei ebenfalls in Mitleidenschaft gezogen. Bei diesem Angriff wurde die im 13. Jahrhundert erbaute Kirche zerstört.

Am 1. April 1972 wurde Rörshain im Rahmen der Gebietsreform in Hessen ein Stadtteil von Schwalmstadt.

Reginharteshagen 1238 (Klosterarchiv V Nr. 102); R(ei)nhardeshagen, 1255; Reinhartshan, 1269; Reinhartshein, 1334; Reynershain, 1502; Rershain, 1585; Röhrshayn, 1747

Ursprünglich befanden sich zwei Mühlen, die Hardtmühle und Zeigerichsmühle im Talgrund der Gers. Die 1799 erbaute Zeigerichsmühle befindet sich seit 1986 im Freilichtmuseum Hessenpark in Neu-Anspach im Hochtaunuskreis. Durch diese Umsetzung konnte die zwischenzeitlich stark baufällig gewordene Mühle als Baudenkmal erhalten werden. Das Haus wird heute als Hessische Uhrmacherschule genutzt.

Die heutige Kirche wurde in den Jahren 1948 bis 1951 neu erbaut. Die aus dem 13. Jahrhundert stammende romanische Kirche fiel am 24. März 1945 einem Bombardement des nahegelegenen ehemaligen Militärflugplatzes zum Opfer.

Für die Kulturdenkmäler des Ortes siehe Liste der Kulturdenkmäler in Rörshain.

Allendorf an der Landsburg | Ascherode | Dittershausen | Florshain | Frankenhain | Michelsberg | Niedergrenzebach | Rommershausen | Rörshain | Treysa | Trutzhain | Wiera | Ziegenhain

Metsapere (Emmaste)

Koordinaten:

Metsapere ist ein Dorf (estnisch küla) in der Landgemeinde Emmaste (Emmaste vald). Es liegt auf der zweitgrößten estnischen Insel Hiiumaa (deutsch Dagö).

Metspere (deutsch Metsaperre) hat 8 Einwohner (Stand 31. Dezember 2011). Der Ort liegt zwölf Kilometer nordwestlich vom Dorf Emmaste entfernt.

Emmaste | Haldi | Haldreka | Harju | Hindu | Härma | Jausa | Kabuna | Kaderna | Kitsa | Kurisu | Kuusiku | Kõmmusselja | Külaküla | Külama | Laartsa | Lassi | Leisu | Lepiku | Metsalauka | Metsapere | Muda | Mänspe | Nurste | Ole | Õngu | Prassi | Prähnu | Pärna | Rannaküla | Reheselja | Riidaküla | Selja | Sepaste | Sinima | Sõru | Tilga | Tohvri | Tärkma | Ulja | Valgu | Vanamõisa | Viiri

Henfield, Gloucestershire

Coordinates:

Henfield is a hamlet in South Gloucestershire, England between Coalpit Heath and Westerleigh, adjoining the hamlet of Ram Hill immediately to the north.

Henfield is a small hamlet that has seen considerable land use change over the recent centuries moving from a traditional agricultural landscape to an active coal mining area by the beginning of the nineteenth century. The noise and pollution associated with mining and railway operations would have been constant. Population would have increased at that time supported by the introduction of new miner’s cottages by the Coalpit Heath Colliery Company. The closure of New Engine Pit, the remaining mine, before the end of the nineteenth century represented change but with railway sidings and engine shed at New Engine and the movement of labour to the nearby Parkfield and Frog Lane Pits, the industrial nature of the area was maintained to well into the twentieth century.

The closure of the Frog Lane Pit at Coalpit Heath in 1949 represented a step change in the area and Henfield reverted to its agricultural roots, a quiet clustered hamlet surrounded by pastoral agricultural land. There were new additions at that time with the introduction of Henfield Village Hall and a little ribbon development along the convergent minor roads. The area was peaceful in the 1950s and early 1960s with little in the way of noise and light pollution. The construction of the M4 Motorway to the south of the hamlet in the late 1960s began to change the character of the area and with the expansion of Bristol and Yate, Henfield has lost its tranquillity and adopted a new role as a commuter satellite to the main urban areas. At the same time the character of the landscape has changed with dairy farming being replaced by new uses in particular „horsiculture“ and the manicured landscape of the Kendleshire Golf Course.

However, with a rich heritage and reminders of its links with the past, such as Bitterwell Lake, the hamlet retains an important sense of community.

Henfield is situated near the centre of the North Bristol Coal Field, this area at one time having been a prolific coal mining community. Coal had been mined in this area since the fourteenth century and most likely even earlier. However it was Sir Samuel Astry, Lord of the Manor of Westerleigh c1680 who started mining on a grander scale and his descendants, or their business partners, continued to be connected with the Coalpit Heath Colliery Company.

Within Henfield itself there were 4 mines operational in the early nineteenth century:

For the nearby Ram Hill Engine Pit, Ram Hill Colliery, Churchleaze No. 1 Pit and Churchleaze No. 2 Pit see Ram Hill.

The underground map of around 1850 shows that the underground roads of the nearby Ram Hill Colliery and Churchleaze pits on Ram Hill joined together with those of the Serridge Engine and New Engine pits.

In the Bristol and Gloucestershire Railway Act of 19 June 1828, parliament authorised the construction of a horse-drawn railway from Ram Hill to the River Avon in Bristol. It was completed and in use by July 1832. At the same time the Avon and Gloucestershire Railway constructed a connecting line from near Mangotsfield to the River Avon at Keynsham.

The Ram Hill Colliery was the northern terminus and near of Bitterwell Lake (then known as Bitterwell Pond, a colliery drainage sump, there was also a southern spur to New Engine Pit; technical facilities were provided there and it served as a supply depot to other local pits. When New Engine Pit ceased extraction itself, the support facilities continued in use, and it came to be named New Engine Yard.

These early railways provided cheap and easy transport from the mines of Coalpit Heath to the wharves on the Avon at Keynsham and Bristol. They were built as single track railway, built to the gauge of 4 ft 8 in gauge, with passing places along the route. The whole length of the railway was built on a down hill gradient dropping 225 ft along the route.

The railways were colloquially referred to as the dramway and in recent times this has been formalised by usage on signs indicating the footpath facilities, and on Ordnance Survey mapping.

In 1839 a main line railway, the Bristol and Gloucester Railway obtained its Act of Parliament; this authorised it to take over the Bristol and Gloucestershire line, and to make a main line railway to Gloucester. The railway was to be on the broad gauge (7 ft 0¼ in, 2,140 mm) and this required the colliery lines to be converted too. It opened on 5 June 1844. The Coalpit Heath group of pits had by then declined, and the line to them beyond New Engine Yard was not converted.

In around 1860 a northern branch was constructed near Boxhedge Farm that served the new Frog Lane Colliery at Coalpit Heath. Following the closure of the New Engine Pit towards the end of the nineteenth century, railway infrastructure at Henfield remained in the form of railway sidings and engine shed. These served the Frog Lane Colliery until its closure in 1949. Some dilapidated built remnants of the railway remain including the old engine shed at New Engine Yard and weighbridge house near Boxhedge Farm.

Bitterwell Lake, also referred to as Bitterwell Pond, is situated near the junction of roads leading to Coalpit Heath and Ram Hill. This man-made lake is now used as a fishing lake and is owned by Westerleigh Parish Council. It was acquired by the Parish Council in 1930 having formerly been part of land owned by the Coalpit Heath Colliery Company. In the past the lake was used to soak the pit props for the mine, and more recently for bathing, fishing, model yachting and boat hire. The lake is over 3 acres in extent and at the time of purchase was surrounded by numerous stone and tiled buildings and two detached cottages with gardens.

It is difficult to establish when precisely the lake was excavated but it was after 1845 as it does not appear on the Westerleigh Tithe Map 1845 and before 1881 as it is clearly shown on the 1st edition (1881) Ordnance Survey Map. There is also uncertainty about the functions of Bitterwell Lake in relation to the mines at Henfield. It may have supplied reservoir water for the mine engines. Sluices regulated water in the lake and within living memory the overflow went to The Clamp, another reservoir pond that had been constructed near the Serridge Pit.

In the 1930s Bitterwell Lake received wide coverage in the newspapers that it was the home of Tarzan who lived in a tree-house and climbed like a monkey.

An example is provided by The Mercury, in Hobart, Tasmania, that reported on 10 October 1934 that in the woods around Bitterwell Lake, near Bristol, is a man aged 20, who lives in the tree tops wearing only a leopard skin. His name is Bernard Skuse but he is known to his friends as Tarzan.

„That’s my favourite tree“ he told the „Daily Express“ Bristol correspondent pointing out the tallest of a number of trees clustering round the lake. He was at the top in ten seconds swinging through the branches of adjacent trees to reach it.

He lives in an eyrie among the leaves which he built himself. It has a wooden floor and a thatched roof. His explanation of his predilection for this mode of life is: „I like it so I do it.“

He is bronzed with a perfectly proportioned muscular body. He explained that his feet are rather flat, which makes climbing easy. When not at work he hunts with a spear, a knife and a bow and arrow. When he feels hot he dives into the lake.“

Nowadays Bitterwell Lake is solely used for fishing but at the same time represents an important local amenity for the surrounding area. A record 8.5 lb eel was caught at Bitterewell Lake in 1922. This held the national record for almost half a century.

Henfield Village Hall – Parish Council records indicate that deeds were received in 1948 for land next to Bitterwell Lake to be used for a new village hall for the residents of the Henfield and New Engine. By the 1960s the village hall represented an important facility in the small community with Saturday dances, whist drives, youth club meetings, jumble sales as well as being a setting for the annual village shows.

The Hall has been modernised and is now known as the Henfield Social Club and is available for hire for a range of activities and private functions.

Newman Field – This small recreation area is located next to the Village Hall and Bitterwell Lake. The land was donated by Jo Newman to the community in 1974.

The community no longer has a village shop but in the past in the 1960s a small store was run by Mrs Tovey.

The two tiers of local government that are responsible for administering Henfield are:

Westerleigh Parish Council has 9 elected members. Matters that have been under recent consideration at Henfield include:

In the adopted Henfield does not have a Defined Settlement Boundary boundary on the Proposals Map and there are no sites allocated for new residential development.

The hamlet is within an area defined as Green Belt and is located within the Forest of Avon area. There are also Major Recreational Routes in the hamlet.

Within the the hamlet of Henfield is within an area defined as:

Westerleigh Vale and Oldland Ridge – The Study indicates that Ram Hill and Henfield, a colliery settlement, are small dispersed/linear and clustered hamlets respectively, consisting of a mix of, Pennant sandstone with more recent render and brick buildings, focused around a convergence of minor roads and lanes. Around the two settlements are scattered farms.

The area of Ram Hill and Henfield comprises a largely strong, irregular rural framework with areas of woodland, mixed overgrown/clipped hedgerows supplemented with wire fences, defining regular shaped fields. The clustered settlement pattern and non-agricultural activities such as storage compounds, are reasonably well integrated as a result of this framework. Horse paddocks are however locally evident where hedgerows have become replaced with fences. Associated ad hoc home-made stables are also evident and atypical of a rural landscape. Large modern agricultural sheds are prominent within older farm complexes within this area.

The small scale settlement at Ram Hill and Henfield is largely well integrated within the framework of hedgerow trees and woodland. The area has a generally tranquil character, although the presence of stables and fences associated with the increase in land use change to „horsiculture“. modern large farm buildings and storage compounds, can detract from this, visually eroding the rural character and resulting in removal or fragmentation of hedgerows. In places the recreational pressure for „horsiculture“ with the associated infrastructure of stables, access tracks, exercise areas, jumps and floodlighting. can result in a marked change in landscape character.

Frome Valley – The Study indicates that the Kendleshire Golf Course retains most of the former agricultural hedgerows and tree structure amongst fairways and greens. However the Golf Course introduces a different landscape structure compared with the adjacent agricultural landscape. A more open landscape structure of mown fairways, low mounding, remnant hedgerows and hedgerow trees and young planting is evident. The new planting measures will in time provide a new landscape structure and help integrate this land-use change with its surroundings.

Two areas of Broadleaved Woodland in Henfield are identified by South Gloucestershire Council as Sites of Nature Conservation Importance:

There are no Sites of Special Scientific Interest within the hamlet.

Henfield Youth AFC was a football club based in the hamlet that was formed in 1960 by a group of local youngsters and their friends. At the outset the club played friendly matches before joining the Bristol Church of England League in 1961. Under the guidance of Percy Bennett (Chairman), Herbert Livall (Secretary) and Alan Parker (Treasurer) the club progressed from Division 4 to Division 1 of the Church of England League before spending their last few seasons in Division 2.

After initially changing in Henfield Village Hall the club acquired the former Bitterwell Lake Model Yacht Club premises and converted them to changing rooms. The club unfortunately folded in 1972 after losing the use of their ground which was situated on agricultural land adjoining the Village Hall and old Railway Line. The land is now used as horse paddocks and the only reminder of the former football club is an old training floodlight which overlooks the Village Hall car park and the Newman Field amenity area next to Bitterwell Lake that Percy Bennett created so that youngsters could still have an area to play football. For a number of years this area, which was donated to Westerleigh Parish Council by Jo Newman, was used for organised small-sided football matches.

Henfield Youth AFC at one time ran two sides and a considerable number of players passed through the club’s ranks over the 12-year period. They included:

For a short period the club formed a sister club called Bitterwell Rangers AFC that played in the Bristol & District Sunday League.

This parkland course is located five minutes from the M32, to the north east of Bristol.

The Hollows & Ruffet Courses were opened in the summer of 1997 to much acclaim. Designed by Adrian Stiff, the courses were set into the rolling Frome valley with plenty of water and an exciting combination of holes from the forgiving to the challenging. In the summer of 2002 the two courses were joined by the Badminton Course, designed by Peter McEvoy to follow the same lines but with his very own twist.

In addition there is the Academy Course which is a six hole, par three practice course. There are also two putting greens, either side of the clubhouse. Built at the same time, and to the same standards, as the greens on the championship course, the putting greens show the same level of maturity, matching the conditions of the main greens.

There is also a practice range, two bars, a restaurant and a function room.

The hamlet is served by , a primary school currently catering for pupils aged 5–11.

Older children attend The Ridings Federation Winterbourne International Academy.

Henfield is served by one bus service operated by Wessex Connect: